
Introduction to Mathematical Modeling - Math 3550
Calculus, Linear Algebra, and Differential and Difference Equations

for Mathematical Modeling© - Version 13

1. You may access the required software, called Mathematica, in the following three ways. 1. Get
your own free copy at https://www.weber.edu/software/mathematica request.html. Activate your copy
of Mathematica through ”Activate through your organization (SSO)”. See Wolfram support page
https://support.wolfram.com/54713 for help. If you need a laptop/tablet, contact WSU Computing
Services https://www.weber.edu/ComputerLabs/laptopcheckout. 2. Any campus computer lab, includ-
ing Tracy Hall Computer Lab, TY 126, and Elizabeth Hall Computer Lab, EH 213. 3. Virtual Lab: For
the Virtual Lab instructions, see http://weber.edu/virtuallab.

2. Here is how to get on Mathematica:

Log in on a computer. Move the mouse pointer to the Mathematica icon, which looks like the above
star like symbol, and rapidly click twice using the left mouse button. You may find the Mathematica
icon on the desktop, under the button Start - Programs - Wolfram or Mathematica, or by doing a
search for Mathematica. Then click on NewDocument , or on New Notebook, if a notebook doesn’t
automatically open. If you need help, ask the lab aide.

3. Entering information is like using a word processor. You can also use the arrow and backspace keys for
editing. Try typing some text and practice editing it. Mathematica displays all works in “cells”. The
bracket on the far right indicate the cells. You can create a new cell for your next input by clicking
the mouse below the cell you have been working in. First a horizontal line will appear and then when
you type a new cell will be created. This lab assumes you have already passed Math 1200, so we skip
arithmetic and algebra commands.

Throughout this lab and future labs input the statements in True Type font exactly as is!

4. You can draw a function, relation, or equation using the Plot command. Each expression must be
followed by a list which gives the variable(s) and the domain (minimum value to maximum value). Enter
the following.

(a) Plot[x^2-3x+4,{x,-10,10}]

Change the domain from -5 to 5 and then again from -100 to 100. You do not need a symmetric
domain, try from 0 to 20.

(b) Mathematica can plot parametric equations, in two or three dimensions.

ParametricPlot[{2 Cos[t],3 Sin[t]},{t,0,2Pi}] (This is the graph of the ellipse x2

4 + y2

9 =
1.)

ParametricPlot3D[{Cos[t],Sin[t],t},{t,0,10}] This is the graph of an ascending helix.

(c) Mathematica can plot 3-dimensional graphs of the form z = f(x, y).

Plot3D[Sin[x^2 y],{x,-Pi,Pi},{y,-Pi,Pi}] This is the graph of z = sin(x2y).

(d) You can graph a polar equation using the PolarPlot command.

PolarPlot[Sin[2t],{t,0,2Pi}] This is the graph of r = sin(2θ). ( I used t was in place of θ
since it was easier to type in!)
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4. Continued.

(e) To graph two or more functions on the same coordinate system, enter them as a list.

Plot[{Cos[x],x^3},{x,-2Pi,2Pi}] (This is the graph of the two functions y = cosx and y = x3

on the same coordinate system.)

(f) You can read the coordinates of a point on a graph by first right clicking on the graph and choosing
Get Coordinates (or, first, Drawing Tools) in the window that opens up. Move the cursor over the
graph. The coordinates will appear on the screen. Now, try to read the coordinates of the point of
intersection of the two curves in the last part. (Compare the approximate x value of the point of
intersection with what you get from the FindRoot command, shown next.)

Now, Try to read the coordinates of the point of intersection of the two curves in the last part. This
x value (say 0.5) can be used to get a more precise answer using the FindRoot command. Try the
following.

FindRoot[Cos[x]==x^3,{x, 0.5}]

5. Mathematics can evaluate limits. However, it is best to first investigate existence of the limit of the
function by graphing it or considering a table of its values, before applying the Limit command. Let’s

investigate lim
x→0

sinx

x
. Enter the following.

(a) Plot[Sin[x]/x, {x, -Pi, Pi}] This graph shows the limit exists.

(a) Limit[Sin[x]/x,x->0, Direction->“FromBelow”] (This is lim
x→0−

sinx
x .)

(b) Limit[Sin[x]/x,x->0, Direction->“FromAbove”] (This is lim
x→0+

sinx
x .)

(c) Limit[Sin[x]/x,x->0] (Since the left and right limits are equal, this is the correct value of
lim
x→0

sinx
x .)

6. Mathematica can do symbolic differentiation.

(a) D[x^2 Sin[x]-3x+1,x] (This gives the derivative of 4 = x2 sinx− 3x+ 1 with respect to x.)

(b) You can also use the prime notation.
f[x_]:=x^3-2x^2+5;f’[x] Is f ′(x) = 3x2 − 4x?
f’’[x] (This gives the second derivative f ′′(x).)
D[f[x],{x,3}] (This gives the third derivative f ′′′(x)).

(c) You can also perform implicit differentiation.
D[x^2 y[x]^2 + x Sin[y[x]]==1,x] This differentiates the equation x2y2 + x sin y = 1 with
respect to x. (y[x] indicates y is a function of x.)
Solve[%,y’[x]] Now, you have solved for y′.

(d) You can also find partial derivatives.

f[x_,y_,z_]:= x^4 z^3 y +x Sin[z+y];

D[f[x,y,z],x]

This is the first partial derivative of f with respect to x, this can also be done by D[f[x,y,z],{x,1}].

D[f[x,y,z],{x,2},{y,1},{z,1}] This is
∂3 f

∂z ∂y ∂2 x
.
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7. Mathematica does symbolic integration. Mathematica evaluates definite integrals both numerically, and,
also, by doing symbolic integration first. Input the following.

(a) Integrate [x^2+1,x] (Mathematica gives the antiderivative with c = 0.)

(b) Integrate [x^2+1,{x,-1,2}] (This evaluates

∫ 2

−1
(x2 + 1) dx.)

(c) f[x_,y_]:=1-(x^2/4)-(y^2 / 9);

Integrate[f[x,y],{x,-2,2},{y,-3, 3}]

This evaluates the iterated integral
∫ 2
−2

∫ 3
−3 f dx dy which gives the volume under the surface z =

1− x2

4 − y2

9 and above the xy-plane.

(d) Numerical Integration. Often we do not know the antiderivative of a function but we can approxi-
mate its definite integral numerically.

NIntegrate[Exp[-x^2],{x,0,Infinity}] (This evaluates

∫ ∞

0
e−x2

dx.)

(e) However, you can hand evaluate some integrals more efficiently than Mathematica. The easy way
to evaluate

∫
3x2(2010−x3)1999 dx is by u-substitution. Mathematica expands the integrand before

finding its antiderivative!

Integrate[3x^2 (2010-x^3)^1999, x]

8. The Series command can be used to find the power series expansion of a function about a given point
up to a given desired power. The Sum command can find the value of some sseries.

(a) Series[E^x, {x,0,6}] (This is the Maclaurin series of f(x) = ex with all terms up to the sixth
power stated explicitly and O[x]7 stands for all higher order terms.)

(b) By adding the command Normal a series is truncated to a polynomial.
Normal[Series[Cos[x], {x,0,8}]] (This is the 8th-degree Maclaurin polynomial of f(x) =
cosx.)

(c) Series[Log[x], {x,1,5}] (This is the Taylor series expansion of f(x) = lnx about x = 1 with
all term up to the fifth power stated explicitly.)

(d) Mathematica can find the sum of certain series.

Sum[1/n^2, {n,1,Infinity}] (This gives the sum of the series
∞∑
n=1

1
n2 .)

9. Braces, { }, signal a “list” to Mathematica. A list can be sued to represent a set, an interval, a table
of data, the parameters in a command, a vector, a matrix, etc. For a matrix, each row is inputted as
a list in the order it appears and rows are separated by commas. If a row has only one entry, it is not
necessary to use braces. Now try the following.

(a) u={1,-3} This is the vector u⃗ =

[
1
−3

]
.

(b) MatrixForm[u] This command shows u⃗ in matrix form.

(c) v={{-2,5,-1}} This is the row vector v⃗ =
[
−2 5 −1

]
.

MatrixForm[v]

(d) m={{1,2},{3,4},{5,6}} This is the matrix m =

 1 2
3 4
4 6

.
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10. You can add or subtract matrices using + and − signs. The symbol “·” is the multiplication sign for
matrices. Input the following.

(a) n={{3,2,1},{6,5,4}} This is the matrix n =

[
3 2 1
6 5 4

]
.

l={{3,-1},{-2,6},{-4,5}} This is the matrix l =

 3 −1
−2 6
−4 5

.
(b) m-2*l This results in the matrix m− 2l.

(c) n.m This gives the product nm.
MatrixForm[n.m]

11. Try the following.

(a) Dimensions[m] This gives the size of the matrix m. The first number is the number of rows and
the second is the number of columns.

(b) i=IdentityMatrix[3] This is the 3× 3 identity matrix i.

(c) d=DiagonalMatrix[{2,2,-3}] This is the 3× 3 diagonal matrix d with the diagonal entries 2, 2
and −3.

(d) Transpose[m] This gives the transpose of the matrix m.
MatrixForm[Transpose[m]]

12. Here we will perform more matrix operations. Input the following.

(a) a={{2.,3,-5},{-1,4,2},{5,7,2}} The decimal point after 2 is used to get Mathematica to work
in decimal (not exact) calculations.

(b) Det[a] This gives the determinant of the matrix a.

(c) Inverse[a] This gives the inverse of the matrix a.
MatrixForm[Inverse[a]]

(d) MatrixPower[a,3] This gives the matrix a3.

(e) Eigenvalues[a] This gives the eigenvalues of the matrix a. This matrix has one real-valued and
a pair of complex conjugate eigenvalues.

(f) Eigenvectors[a] This gives the eigenvectors of the matrix a.

(g) Eigensystem[a] This gives a list of eigenvalues followed by their corresponding eigenvactors.

13. We can solve a linear system using matrices. The system


2x+ 3y − 5z = 14
−x+ 4y + 2z = 0
5x+ 7y + 2z = −9

in matrix form is

 2 3 5
−1 4 2
5 7 2


 x

y
z

 =

 14
0
−9

. Notice that the coefficient matrix is the matrix a used above.

(a) Solve[{2x+3y-5z==14, -x+4y+2z==0, 5x+7y+2z==-9},{x,y,z}] This gives the solution using
the Solve command.

(b) b={14,0,-9} This is the constant matrix on the right side.

(c) Now, our system is a

 x
y
z

 = b and the solution is

 x
y
z

 = a−1 b. Input the following.

Inverse[a].b Did you get the same answer as before?
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14. The direction field of a differential equation of the form dy
dx = f(x, y) is the plot of the vectors v⃗ =

⟨1, f(x, y)⟩ at each grid point (x, y) in the plane. The Mathematics command for such a plot is
VectorPlot. Consider the differential equation dy

dx = y − x2.

(a) VectorPlot[{1,y-x^2}, {x,-3,3}, {y,-4,4}] (Not quite the direction field since all vectors
have the same length.)

(b) You can change the number of vectors by specifying the number of vectors.
VectorPlot[{1,y-x^2}, {x,-3,3}, {y,-4,4}, VectorPoints->20]

(c) Notice that Mathematica draws all vectors with the same length. It uses the vector colors to indi-
cate the length of vectors. To preserve the length of vectors, use the following command.
VectorPlot[{1,y-x^2},{x,-3,3},{y,-4,4},VectorScaling->Automatic,VectorPoints->20] (This
is the direction field of the given ODE for −3 ≤ x ≤ 3 and −4 ≤ y ≤ 4.)

(d) Mathematica can display the vectors as part of the approximate trajectories of the solutions using
the StreamPlot command.
StreamPlot[{1,y-x^2}, {x,-3,3}, {y,-4,4}]

(e) The same commands work systems of ODE’s. The vector field for the system dy
dx = f(x, y), dy

dx =

g(x, y) is the graph of vectors of the form v⃗ = ⟨f(x, y), g(x, y)⟩. Consider the system dy
dx = −x+ x3,

dy
dx = −2y. Try each of the following.
VectorPlot[{-x+x^3, -2y}, {x,-3,3}, {y,-4,4}]

StreamPlot[{-x+x^3, -2y}, {x,-3,3}, {y,-4,4}]

15. Using the DSolve and NDSolve commands, we can find solutions to many differential equations.

(a) The syntax for the general solution of y′ = f(x, y) is DSolve[y’[x]==f(x, y), y[x], x]. Consider
the equation dy

dx = y − x2.
DSolve[y’[x]==y[x]-x^2, y[x], x] (C[1] in the answer is the constant c1.)

(b) The syntax for the solution of the IVP y′ = f(x, y), y(x0) = y0 is DSolve[{y’[x]==f(x, y),
y[x0]==y0}, y[x], x]. Consider the IVP dy

dx = y − x2, y(0) = 2.
DSolve[{y’[x]==y[x]-x^2,y[0]==2}, y[x], x]

(c) In a similar fashion, you can solve a system of equations.
DSolve[{x’[t]==2x[t]+y[t],y’[t]==x[t]-2y[t]}, {x[t],y[t]}, t] (This gives the general
solution of the system dx

dt = 2x+ y, dy
dt = x− 2y.)

DSolve[{x’[t]==2x[t]+y[t],y’[t]==x[t]-2y[t], x[0]==2, y[0]==1}, {x[t],y[t]}, t] (This
gives the solution of the IVP system dx

dt = 2x+ y, dy
dt = x− 2y, x(0) = 2, y(0) = 1.)

(d) Sometimes the ODE can only be solved numerically or you may just want to graph the solution. In
that case the command NDSolve is used and its output is graphed. The syntax for this command
is NDSolve[{y’[x]==f(x, y), y[x0]==y0}, y[x], {x, x min, x max}].
NDSolve[{y’[x]==y[x]-x^2,y[0]==2}, y[x], {x, -3,3}] (Now, Mathematics has the numer-
ical solution, a collection of points on the solution, for −3 ≤ x ≤ 3.) To graph it, do the following.
Plot[Evaluate[y[x] /. %], {x, -3,3}] (/. means replace all and y[x] /. % means replace
y[x] with the last output.)

(e) To graph the solution of the IVP system dx
dt = −x + x3, dy

dt = −2y, x(0) = 0.5, y(0) = 1, do the
following.
NDSolve[{x’[t]==2x[t]+y[t],y’[t]==x[t]-2y[t],x[0]==2,y[0]==1},{x[t],y[t]},{t,-2,2}]

ParametricPlot[Evaluate[{x[t], y[t]} /. %], {t, -2, 2}]
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15. Continued.

(f) We can graph the direction field and a solution together. The following is the direction field for
dy
dx = y − x2 and graph of the solution of the IVP for the same ODE with the initial condition
y(0) = 2.
graph1=VectorPlot[{1, y - x^2}, {x, -3, 3}, {y, -4, 4}]

NDSolve[{y’[x]==y[x]-x^2, y[0]==2}, y[x], {x, -3, 3}]

graph2=Plot[Evaluate[y[x] /. %], {x, -3, 3}]

Show[graph1, graph2]

(g) To combine a direction field with graphs of solutions of several IVP’s with the same ODE, use the
Table command. The following is as in the last part except that initial conditions are y(0) = n for
n = −3, −2, −1, 0, 1, 2, 3.
graph1=VectorPlot[{1, y - x^2}, {x, -3, 3}, {y, -4, 4}]

Table[NDSolve[{y’[x]==y[x]-x^2, y[0]==n}, y[x], {x,-3,3}],{n,-3,3,1}]

graph3=Plot[Evaluate[y[x] /. %], {x,-3,3}]

Show[graph1, graph3]

16. Given a recurrence or difference equation an+1 = f(an) with initial condition a0, Mathematica can be used
to find its terms, graph the terms and even solve it. Consider the recurrence relation an+1 = 0.5an + 1,
a0 = 3.

(a) The syntax to find the numerical values of a recurrence relation for n = 0 to n = m is RecurrenceTable
[{a[n+1]==f(an), a[0]==a0}, a, {n, 0, m}]. Try the following.
Clear[a,n] This clears the a and n values used above.
ReccurenceTable[{a[n+1]==0.5 a[n]+1, a[0]==3, a, {n,0,5}] This gives the values of a0
through a5.

(b) We can graph this simple recurrence sequence as follows.
a[0]=3;

a[n_]:=0.5 a[n-1]+1 We subtracted one from the index so we could define a as a function of n.
ListPlot[Table[{n, a[n]},{n,0,5}]]

(c) We can also graph several simple recurrence sequences with different initial values a01, a02, ..., a0k
for n = 0 to n = m using ListPlot[Table[Table[{n, a[n]},{n, 0, m}],{a[0],{a01, a02, ...

, a0k}}]].
a[n_]:=0.5 a[n-1]+1 This function definition was not necessary since we did it in the last step.
ListPlot[Table[Table[{n, a[n]},{n,0,5}],{a[0],{-1,3,6}}]] This graph three sequences
with initial conditions −1, 3, and 6.

(d) We can solve a recurrence or difference equation by RSolve[{a[n+1]==f(an), a[0]==a0}, a[n],

n].
Clear[a]

RSolve[{a[n+1]==0.5 a[n]+1,a[0]==3},a[n],n] The solution simplifies to an = 2 + 2−n.

17. Similarly, we can work with a system of recurrence or difference equations.

(a) Consider the recurrence system an+1 = an(1.1 − 0.01bn) + 1, bn+1 = bn(−0.1 + 0.05an), a0 = 30,
b0 = 5. The following gives the values of (a0, b0) through (a5, b5).
Clear[b] This clears the b value used above.
RecurrenceTable[{a[n+1]==a[n](1.1-0.01b[n]), b[n+1]==b[n](-0.1+0.05a[n]),

a[0]==30,b[0]==5}, {a,b}, {n,0,5}]
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17. Continued.

(b) We can graph the above simple system of recurrence equations as follows.
a[0]=30;b[0]=5;

a[n_]:= a[n-1](1.1-0.01b[n-1]);b[n_]:=b[n-1](-0.1+0.05 a[n-1]) We subtracted one from
the index so we could define a and b as a function of n.
ListPlot[Table[{a[n], b[n]},{n,0,5}]]

(c) We can only solve very simple systems of recurrence equations. Consider an+1 = bn + n + 1,
bn+1 = an − n− 1, a0 = b0 = 1. Input the following.
Clear[a,b] This clears a and b values found above.
RSolve[{a[n+1]==b[n]+n+1, b[n+1]==a[n]-n-1, a[0]==b[0] == 1}, {a[n], b[n]}, n]

18. To work with complicated recurrence relations or systems of recurrence relations or when many terms
need to be calculated, we need to avoid recalculating all previous terms each time a new term is calculated.

(a) The syntax to find and plot the numerical values of a recurrence relation for n = 0 to n = m is

xvalues = Table[n, {n, 0, m}];
yvalues = RecurrenceTable[{a[n] == f(an−1), a[0] == a0}, a, {n, 0, m}]
points = Transpose[{xvalues, yvalues}]
ListPlot[points]

Now consider an+1 = a1.01n + 0.25(−1)nan, a0 = 5 and input the following to graph a0 through a50.
xvalues = Table[n, {n, 0, 50}];

yvalues = RecurrenceTable[{a[n]==a[n-1]^1.01+0.25(-1)^n a[n-1], a[0]==5}, a, {n,0,50}];

points = Transpose[{xvalues, yvalues}];

ListPlot[points]

(b) Consider the system of recurrence relations an+1 = an(1.1 − 0.01bn), bn+1 = bn(−0.1 + 0.05an),
a0 = 30, b0 = 5. The following will plot the ordered pairs (a0, b0) through (a50, b50).
points=RecurrenceTable[{a[n+1]==a[n](1.1-0.01b[n]), b[n+1]==b[n](-0.1+0.05a[n]),

a[0]==30,b[0]==5}, {a,b}, {n,0,50}]; We needed to name
the list of values, in order to recall it.
ListPlot[points, PlotRange->All]

(c) We can also plot values of a and b separately as a function of n. Try the following.
points=RecurrenceTable[{a[n+1]==a[n](1.1-0.01b[n]), b[n+1]==b[n](-0.1+0.05a[n]),

a[0]==30,b[0]==5}, {a,b}, {n,0,50}]; This was not nec-
essary, since we have already done it.
apoints=Table[{i-1,points[[i,1]]},{i,1,51}]; The command points[[i,1]] picks the first
element in the ith ordered pair in points.
bpoints=Table[{i-1,points[[i,2]]},{i,1,51}]; The command {i-1,points[[i,2]]} forms
ordered pair (n, bn) for each of the n values.
ListPlot[{apoints, bpoints},PlotStyle->{{Red,PointSize[0.02]},

{Blue, PointSize[0.01]}}, PlotRange->All]

The a values are the larger red points.

19. It is essential, as a courtesy to future users, and continued problem-free usage, to leave the computers as
you find them. When you are done, close the application and/or log off properly.


